Fundamentals and examples of **Marine Data Analysis**

Marine Data Literacy Course European University of the Seas ^{7th} November 2023

Instrumentation and sampling

Time series analysis

Statistical methods

Spatial analysis of data fields

Climatological assessments

Carlos Román Cascón University of Cádiz *carlos.roman@uca.es*

Outline

1. Instrumentation and sampling characteristics.

2. Data analysis. How to deal with data...

- Basic statistics, climatology, anomalies, correlation...

3. Spatial analysis of data.

4. Time series analysis.

- Fourier analysis, Harmonic analysis, Spectral analysis, Wavelet...

5. Some examples!

WHY DATA ANALYSIS?

WHY DATA ANALYSIS?

We have our hypothesis and we want to check it to obtain **scientific conclusions**.

We need to design the experiment, to obtain data, and to **analyse** them.

READ \rightarrow REPRESENT \rightarrow PROCESS \rightarrow CALCULATE \rightarrow THINK \rightarrow ADVANCED STUDIES \rightarrow SCIENTIFIC CONCLUSIONS

- 0. **Read** the data \rightarrow Fight against the files you receive!
- 1. Just **Represent** the variable(s) you are interested in → see their evolution in time, their spatial distribution (horizontal, vertical), etc.
- 2. **Processing** \rightarrow edit the data in files to correct errors, transform the data, quality control, etc.
- 3. **Calculate** basic statistics → mean, standard deviation, anomalies (if we know the climatology), etc.
- 4. **Think** → Correlation with other variables? Try to understand the physical processes.
- 5. **Advanced** studies → Spectral analysis (Fourier), Harmonic analysis, etc.
- 6. Obtain scientific conclusions.

I. Instrumentation and sampling characteristics

I. Instrumentation and sampling characteristics

BEFORE THE DATA ANALYSIS, we need to know details about the instrumentation and the experiment.

Instrument calibration

(can be done several times, for example before each field campaign)

Instrument factory...

Comparison of two devices in the same place...

Always NOTE type of calibration and date!

Absolute accuracy

(related to systematic errors)

Shifts in records (calibration needed). Deviation from TRUE value (bias).

Oceanographical example

2 scientific groups are measuring the same (nutrients in some area).

Their obtained values are different (mean) due to differences in the methods/instrumentation used.

These are systematic errors. To check which one is more accurate we need reference measurements.

Precision

(related to random errors)

Ability to repeat the observation without deviation. Deviation of one measurement from another.

Fluctuations in the measurement due to limitations in the precision of the instruments It is quantified through the **variance or standard deviation**.

Accuracy vs. Precision

Sampling characteristics

Resolution

(related to the readability of the measurement system)

Smallest change the sensor can capture and display.

Data =

949.272000000000 949.2720000000000 949.2720000000000 949.272000000000 949.2749999999999 949.2720000000000 949.2720000000000 949.2720000000000

Sampling interval (Δt) (also time resolution)

Time between measurements.

It should be often enough to detect the processes we are interested in.

Sampling duration

It should allow for a statistically significant picture of the processes studied.

Sampling characteristics

Sampling duration

It should allow for a statistically significant picture of the processes studied.

https://gml.noaa.gov/ccgg/trends/graph.html

Sampling duration

It should allow for a statistically significant picture of the processes studied.

Sampling duration

It should allow for a statistically significant picture of the processes studied.

2. Data Analysis

$\mathsf{READ} \rightarrow \mathsf{REPRESENT} \rightarrow \mathsf{PROCESS} \rightarrow \mathsf{CALCULATE} \rightarrow \mathsf{THINK} \rightarrow \mathsf{ADVANCED} \ \mathsf{STUDIES} \rightarrow \mathsf{SCIENTIFIC} \ \mathsf{CONCLUSIONS}$

- 0. **Read** the data \rightarrow Fight against the files you receive!
- 1. Just **Represent** the variable(s) you are interested in \rightarrow see their evolution in time, their spatial distribution (horizontal, vertical), etc.
- 2. **Processing** \rightarrow edit the data in files to correct errors, transform the data, quality control, etc.
- 3. **Calculate** basic statistics → mean, standard deviation, anomalies (if we know the climatology), etc.
- 4. **Think** → Correlation with other variables? Try to understand the physical processes.
- 5. **Advanced** studies → Spectral analysis (Fourier), Harmonic analysis, etc.
- 6. Obtain **scientific conclusions.**

ascii files, netcdf files, excel files, HDF5, binary...

	IMPORT	VIEW							666660	
0	Delimited	Column delimit Space	ers: w Range	: A2:CY15 Cutput Type:	Replace • u	nimportable cells with 🔻 NaN	-+* V			
0	Fixed Width	O Delimiter O	Variable Names Row	: 1 🔹 🕲 Text Options 🔻			Selection			
		DELIMITERS	SELECTION	N IMPORTED DATA	UNP	IPORTABLE CELLS	IMPORT			
ſ	El_Arenosill	_data_20220719	9_20221031.txt 🙁							
	Α	В	С	D	E	F	G	Н	I.	
		DATA								
	VarNam	e1 VarName2	G001901RADS0110MNAVG	G001901RADS0210MNAVG	G001901RADL0110MNAVG	G001901RADL0210MNAVG	G001901SHFX0110MNAVG	G001901WVFX0110MNAVG	G001901HFXS0110MNAVG G00	
	Datetime	▼Datetime ▼	Number	▼Number ▼	Number 🔹	Number 🔻	Number 🔹	Number 🔹	Categorical •Numl	
							L			
1			G001901.RADS01#10MN.AV	G G001901.RADS02\$10MN.AVG	G001901.RADL01\$10MN.AVG	G001901.RADL02#10MN.AVG	G001901.SHFX01#10MN.AVG	G001901.WVFX01#10MN.AVG	G001901.HFXS01\$10MN.AVG G0	
2	2022-07	19 00:00:00	-4.03600	0 1.933000	357.600006	424.200012	-20.881531	7.477872	NaN	
3	2022-07	-19 00:10:00	-4.12700	0 1.783000	357.299988	424.000000	-31.309790	8.592950	NaN	
4	2022-07	19 00:20:00	-4.248	1.725000	356.700012	423.899994	-26.287439	5.448328	NaN	
5	2022-07	19 00:30:00	-4.25500	0 1.668000	356.100006	423.500000	-35.763290	6.414680	NaN	
6	2022-07	19 00:40:00	-4.27200	0 1.615000	355.500000	423.200012	-24.138241	4.189248	NaN	
7	2022-07	-19 00:50:00	-4.52300	0 1.312000	354.500000	422.500000	-31.003481	3.050351	NaN	
8	2022-07	19 01:00:00	-4.52600	0 1.280000	353.200012	421.899994	-31.627880	4.555998	NaN	
9	2022-07	·19 01:10:00	-4.88700	0 1.125000	351.200012	420.799988	-21.936630	1.452335	NaN	
10	2022-07	-19 01:20:00	-4.98800	0 1.105000	349.899994	419.500000	-28.167290	1.568775	NaN	
11	2022-07	-19 01:30:00	-4.94200	0 1.219000	349.00000	418.299988	-20.176100	2.049823	NaN	
12	2022-07	19 01:40:00	-4.92000	0 1.180000	348.600006	417.200012	-21.996960	1.463873	NaN	
13	2022-07	-19 01:50:00	-4.86900	0 1.222000	347.799988	416.299988	-22.173809	1.142873	NaN	
14	2022-07	19 02:00:00	-4.85800	0 1.188000	346.700012	415.200012	-18.996960	0.347801	NaN	
15	2022-07	·19 02:10:00	-4.67400	0 1.253000	346.100006	414.399994	-18.819099	-2.055862	NaN	
16	2022-07	-19 02:20:00	-4.77800	0 1.133000	345.000000	413.399994	-17.304159	-0.800038	NaN	
17	2022-07	-19 02:30:00	-4.56300	0 1.237000	344.200012	412.700012	-14.463600	-2.456362	NaN	
18	2022-07	19 02:40:00	-4.62800	0 1.175000	343.799988	411.899994	-10.998410	-2.425324	NaN	
19	2022-07	-19 02:50:00	-4.64300	0 1.152000	342.899994	411.100006	-13.567630	-3.804488	NaN	
20	2022-07	-19 03:00:00	-4.32500	0 1.347000	342.399994	410.600006	-16.980749	-3.782150	NaN	
21	2022-07	·19 03:10:00	-4.53500	0 1.322000	342.200012	409.799988	-16.161360	-3.555386	NaN	

FIRST QUICKLOOKS!

Examples:

. . .

- a) Variable along the time
- b) Profiles time series
- c) Current speed and direction along the time
- d) Stick diagram (same than in c)

From Emery and Thomson (2014)

Hovmöller diagram

Time in y-axis Space in x-axis Variable in colors

Depth in y-axis Latitude in x-axis Variable in contours

FIGURE 2.1 Latitudinal section of salinity in the western basin of the Atlantic Ocean. (After Spiess (1928).) From Emery and Thomson (2014)

Exaggeration of the y-axis in comparison with the x-axis needed!

ALWAYS SAVE THE ORIGINAL DATA FILE! (raw data) (security copy)

Mean, standard deviation, anomaly (if we know the climatology), ...

Caution when working with circular variables (wind direction, currents direction...)

Climatology and anomalies

Basic Statistics

The September 2022 global surface temperature departure tied September 2021 as the fifth highest for September in the 143-year record at 0.88°C (1.58°F) above the 20th century average of 15.0°C (59.0°F). The ten warmest Septembers on record have all occurred since 2012. September 2022 also marked the 46th consecutive September and the 453rd consecutive month with temperatures, at least nominally, above the 20th century average.

The September global surface temperature was 1.44°C (2.59°F) above the 20th-century average of 15.0°C (59.0°F), making it the warmest September on record. September 2023 marked the 49th-consecutive September and the 535th-consecutive month with temperatures at least nominally above the 20th-century average. September 2023 was 0.46°C (0.83°F) above the previous record from September 2020, and marks the largest positive monthly global temperature anomaly of any month on record. The September 2023 global temperature anomaly surpassed the previous record-high monthly anomaly from March 2016 by 0.09°C (0.16°F). The past ten Septembers (2014–2023) have been the warmest Septembers on record.

https://climatereanalyzer.org/clim/sst_daily/

https://climatereanalyzer.org/wx/DailySummary/#sstanom

https://climatereanalyzer.org/wx/todays-weather/?var_id=t2anom&ortho=1&wt=1

Correlations

Is my variable related to other variables?

Is this relationship interesting to analyse?

<u>Covariance</u> Statistical relationship between two variables <u>Correlation</u> Covariance divided by std product of both vars [-1 to 1]

3. Spatial Analysis of Data Fields

 $\sigma_{monthly}$

Southern Oscillation Index (SOI)

The Southern Oscillation Index (SOI) is a standardized index based on the observed sea level pressure (SLP) differences between Tahiti and Darwin, Australia. The SOI is one measure of the large-scale fluctuations in air pressure occurring between the western and eastern tropical Pacific (i.e., the state of the Southern Oscillation) during El Niño and La Niña episodes. In general, smoothed time series of the SOI correspond very well with changes in ocean temperatures across the eastern tropical Pacific. The negative phase of the SOI represents below-normal air pressure at Tahiti and above-normal air pressure at Darwin. Prolonged periods of negative (positive) SOI values coincide with abnormally warm (cold) ocean waters across the eastern tropical Pacific typical of El Niño (La Niña) episodes. The methodology used to calculate SOI is available below. More information can be found at the <u>Climate Prediction Center</u> <u>SOI page</u>.

Southern Oscillation Index (SOI)

https://www.ncei.noaa.gov/access/monitoring/enso/soi

We can correlate the evolution of this index

With the time evolution of several variables defined spatially

For example, SST...

Southern Oscillation Index (SOI)

The Southern Oscillation Index (SOI) is a standardized index based on the observed sea level pressure (SLP) differences between Tahiti and Darwin, Australia. The SOI is one measure of the large-scale fluctuations in air pressure occurring between the western and eastern tropical Pacific (i.e., the state of the Southern Oscillation) during El Niño and La Niña episodes. In general, smoothed time series of the SOI correspond very well with changes in ocean temperatures across the eastern tropical Pacific. The negative phase of the SOI represents below-normal air pressure at Tahiti and above-normal air pressure at Darwin. Prolonged periods of negative (positive) SOI values coincide with abnormally warm (cold) ocean waters across the eastern tropical Pacific typical of El Niño (La Niña) episodes. The methodology used to calculate SOI is available below. More information can be found at the <u>Climate Prediction Center</u> <u>SOI page</u>.

https://www.ncei.noaa.gov/access/monitoring/enso/soi

We can correlate the evolution of this index (timeseries)

With the time evolution of several variables defined spatially

For example, SST defined spatially

Southern Oscillation Index (SOI)

The Southern Oscillation Index (SOI) is a standardized index based on the observed sea level pressure (SLP) differences between Tahiti and Darwin, Australia. The SOI is one measure of the large-scale fluctuations in air pressure occurring between the western and eastern tropical Pacific (i.e., the state of the Southern Oscillation) during El Niño and La Niña episodes. In general, smoothed time series of the SOI correspond very well with changes in ocean temperatures across the eastern tropical Pacific. The negative phase of the SOI represents below-normal air pressure at Tahiti and above-normal air pressure at Darwin. Prolonged periods of negative (positive) SOI values coincide with abnormally warm (cold) ocean waters across the eastern tropical Pacific typical of El Niño (La Niña) episodes. The methodology used to calculate SOI is available below. More information can be found at the <u>Climate Prediction Center</u> <u>SOI page</u>.

https://www.ncei.noaa.gov/access/monitoring/enso/soi

NOAA Physical Sciences Laboratory

We can correlate the evolution of this index (timeseries)

With the time evolution of several variables defined spatially

For example, SST defined spatially

Southern Oscillation Index (SOI)

The Southern Oscillation Index (SOI) is a standardized index based on the observed sea level pressure (SLP) differences between Tahiti and Darwin, Australia. The SOI is one measure of the large-scale fluctuations in air pressure occurring between the western and eastern tropical Pacific (i.e., the state of the Southern Oscillation) during El Niño and La Niña episodes. In general, smoothed time series of the SOI correspond very well with changes in ocean temperatures across the eastern tropical Pacific. The negative phase of the SOI represents below-normal air pressure at Tahiti and above-normal air pressure at Darwin. Prolonged periods of negative (positive) SOI values coincide with abnormally warm (cold) ocean waters across the eastern tropical Pacific typical of El Niño (La Niña) episodes. The methodology used to calculate SOI is available below. More information can be found at the <u>Climate Prediction Center</u> <u>SOI page</u>.

https://www.ncei.noaa.gov/access/monitoring/enso/soi

NOAA Physical Sciences Laboratory

Interesting for the study of teleconnections!

https://psl.noaa.gov/data/correlation/

We can correlate the evolution of this index

With the time evolution of several variables defined spatially

For example SST...

https://psl.noaa.gov/data/correlation/

Southern Oscillation Index (SOI)

The Southern Oscillation Index (SOI) is a standardized index based on the observed sea level pressure (SLP) differences between Tahiti and Darwin, Australia. The SOI is one measure of the large-scale fluctuations in air pressure occurring between the western and eastern tropical Pacific (i.e., the state of the Southern Oscillation) during El Niño and La Niña episodes. In general, smoothed time series of the SOI correspond very well with changes in ocean temperatures across the eastern tropical Pacific. The negative phase of the SOI represents below-normal air pressure at Tahiti and above-normal air pressure at Darwin. Prolonged periods of negative (positive) SOI values coincide with abnormally warm (cold) ocean waters across the eastern tropical Pacific typical of El Niño (La Niña) episodes. The methodology used to calculate SOI is available below. More information can be found at the <u>Climate Prediction Center</u> <u>SOI page</u>.

very nice website to try these correlations...

Data sources: National Vital Statistics Reports and U.S. Department of Agriculture

https://www.tylervigen.com/spurious-correlations

We were correlating a vector (SOI evolution) with another vector (SST evolution)...

but we had this last vector defined for each grid point of the map

Maybe we want to correlate two spatially-distributed variables (like SST ... and another one (for example the wind speed timeseries in each point))

Multivariate analysis

. . . .

How to deal with the spatial + temporal variability?

Empirical Orthogonal Functions (EOFs) - also known as Principal Component Analysis (PCA) -

Compact description of the spatial and temporal variability (modes) Defined by the covariance

multivariate space)

135E

180

15

20

25

90E

EOFs (Empirical Ortogonal Functions)

Climate is too complex and can vary in several ways....

Studying all the possible variations is too complicated...

Never too years are going to be the same...

But they can be similar...

45E

There are statistical methods to deal with this complexity (EOF)

From Gómara (2015), adapted from Rodríguez-Fonseca (2001)

There are statistical methods to deal with this complexity (EOF)

Time-series at Y = spatiotemporal matrix each point ns,nt Maps at each timestep

Mathematical calculation related to diagonalisation of covariance matrix....

 $C = \frac{1}{nt} Y'[ns, nt] \cdot Y'^{T}[nt, ns]$

In this case, Y'[ns,nt] is the anomaly of the two-dimensional (space) variable And $Y'^{T}[ns,nt]$ is the same at other time

 $(C - \lambda_i I) \overrightarrow{e_i} = 0$

Diagonalization of the matrix of covariances, with eigenvectors (e_i) and eigenvalues (λ_i)

 $\overline{\alpha_{\iota}[nt,1]} = Y'^{T}[nt,ns] \cdot \overline{e_{\iota}[ns,1]}$

The PC are calculated as the projection of the anomalous field (Y') onto the corresponding eigenvector (EOF)

 $\overline{\alpha_{\iota}[nt,1]} = Y'^{T}[nt,ns] \cdot \overline{e_{\iota}[ns,1]}$

This is a clean way to analyse the variability. With a few "modes" we can describe almost the whole system. Maybe we want to correlate the evolution of one of the main modes with something... (as we did for AIO but using spatial structures).

We <u>reduce</u> one of the dimensions of the data (removing redundant information in the time-evolving fields)

We see a cyclic evolution...

What kind of signal is in my data?

How can we analyse their frequency content?

WHAT DO WE WANT?

Periodic variability of the timeseries – separate it from other aperiodic fluctuations How is its spectra?

Frequency (time) - Wavelength (space)

WHAT DO WE WANT?

Periodic variability of the timeseries – separate it from other aperiodic fluctuations How is its spectra?

Frequency (time) - Wavelength (space)

WHAT DO WE NEED?

Long timeseries with the appropriate time resolution (Sampling theorem) *"the highest detectable frequency or wavenumber (Nyquist) is determined by the data separation (frequency)"* 10 min data → one cycle each 20 min (highest detectable freq.)

WHAT DO WE WANT?

Periodic variability of the timeseries – separate it from other aperiodic fluctuations How is its spectra?

Frequency (time) - Wavelength (space)

WHAT DO WE NEED?

Long timeseries with the appropriate time resolution (Sampling theorem) *"the highest detectable frequency or wavenumber (Nyquist) is determined by the data separation (frequency)"* 10 min data → one cycle each 20 min (highest detectable freq.)

WHAT SHOULD WE USE?

Fourier analysis Harmonic analysis Spectral analysis Wavelet... A time series is like a combination of periodic (or almost) components + noise (+ trends)

Periodic components \rightarrow almost fixed amplitudes and phases

Fourier analysis → Identification of these components of a timeseries

A time series is like a combination of periodic (or almost) components + noise (+ trends)

Periodic components \rightarrow almost fixed amplitudes and phases

Fourier analysis → Identification of these components of a timeseries

If Y is periodic \rightarrow Y(t) = Y(t + T)

$$Y_t = A\cos(\frac{2\pi t}{T} + \theta)$$

$$Y_t = a\cos(\omega t) + b\sin(\omega t)$$

A time series is like a combination of periodic (or almost) components + noise (+ trends)

Periodic components \rightarrow almost fixed amplitudes and phases

Fourier analysis → Identification of these components of a timeseries

If Y is periodic \rightarrow Y(t) = Y(t + T)

$$Y_t = A\cos(\frac{2\pi t}{T} + \theta)$$

$$Y_t = a\cos(\omega t) + b\sin(\omega t)$$

CALCULATION OF COEFFICIENTS!

Fourier analysis

CALCULATION OF COEFFICIENTS!

 $Y_t = a\cos(\omega t) + b\sin(\omega t)$

$$a_{k} = \frac{2}{T} \int_{0}^{T} s(t) \cos\left(\frac{k2\pi t}{T}\right) dt$$

$$b_{k} = \frac{2}{T} \int_{0}^{T} s(t) sen\left(\frac{k2\pi t}{T}\right) dt$$

T = (N-1) Δ t is the sampling length... k = 0, 1, 2 N/2...

$$a_{k} = \frac{2}{(N-1)} \sum_{i=0}^{N} s(i \Delta t) cos(\frac{k}{(N-1)\Delta t} 2\pi i \Delta t)$$

$$b_{k} = \frac{2}{(N-1)} \sum_{i=0}^{N} s(i \Delta t) sen(\frac{k}{(N-1)\Delta t} 2\pi i \Delta t)$$

See very clear example in Emery and Thomson (2014)

YEAR	1982											
n	1	2	3	4	5	6	7	8	9	10	11	12
SST	7.6	7.4	8.2	9.2	10.2	11.5	12.4	13.4	13.7	11.8	10.1	9.0
YEAR	1983											
n	13	14	15	16	17	18	19	20	21	22	23	24
SST	8.9	9.5	10.6	11.4	12.9	12.7	13.9	14.2	13.5	11.4	10.9	8.1

FIGURE 5.57 Monthly mean sea surface temperature (SST) record for Amphitrite Point on the west coast of Vancouver Island (see Table 5.11). The bold line is the original 24-month series; the dashed line is the SST time series generated using the first three Fourier components, f_{p} , p = 0, 1, 2, corresponding to the mean, 24-month, and 12-month cycles (Fourier components appear in Table 5.12). FFT, fast Fourier transform.

p	Frequency (cpmo)	Period (month)	Coefficient A_p (°C)	Coefficient B _p (°C)	Coefficient C_p (°C)	Phase θ_p (degrees
0	0	-	21.89	0	21.89	0
1	0.042	24	-0.55	-0.90	1.05	-121.4
2	0.083	12	-1.77	-1.99	2.67	-131.7
3	0.125	8	0.22	-0.04	0.23	-10.3
4	0.167	6	-0.44	-0.06	0.45	-172.2
5	0.208	4.8	0.09	-0.07	0.11	-37.9
6	0.250	4	0.08	-0.04	0.09	-26.6
7	0.292	3.4	0.01	-0.16	0.16	-58.0
8	0.333	3	-0.03	-0.16	0.16	-100.6
9	0.375	2.7	-0.14	0.05	0.15	160.3
10	0.417	2.4	-0.09	-0.07	0.11	-142.1
11	0.458	2.2	-0.08	-0.12	0.14	-123.7
12	0.500	2	-0.15	0	0.15	0

Nyquist freq. = $fN = 1/(2\Delta t) = 1/(2^*1) = 0.5$ (cycles/month) (p=12) (remember we have 24 data)

Fundamental freq. = f1 = 1/24 = 0.042 (p=1)

Periodogram time domain Signal to be analysed 40.0 20.0 0.0 -20.0 -40.0 -100.0 200.0 300.0 0.0 400.0 500.0 msec Fourier inverse Fourier transform transform frequency domain Magnitude spectrum of signal above 10.0 8.0 -6.0 -4.0 -2.0 -4 0.0 0.0 50.0 100.0 Hz 150.0 200.0

Periodogram

Fourier analysis

Periodogram: formulation...

Our timeseries seems to follow this "model"...

$$Y_{t} = \sum_{i=1}^{k} (a_{p} \cos \omega_{i} t + b_{i} \sin \omega_{i} t) + \varepsilon_{t}$$

We assume that our frequencies are...

$$\omega_i = \frac{2\pi p_i}{N} \qquad p_i = 1, \dots, k$$

The parameters a and b are determined as:

$$\hat{a}_{p} = \frac{2}{N} \sum_{t=1}^{N} Y_{t} \cos p \omega_{o} t \qquad \hat{a}_{0} = \sum_{t=1}^{N} \frac{Y_{t}}{N} \qquad \hat{a}_{N/2} = \frac{1}{N} \sum_{t=1}^{N} Y_{t} \cos \pi t$$

$$\hat{b}_{p} = \frac{2}{N} \sum_{t=1}^{N} Y_{t} \sin p \omega_{o} t$$

And finally, we calculate our periodogram:

$$I(\omega_p) = \frac{(a_p^2 + b_p^2)}{2\omega_0}$$

FIGURE 5.18 The origin of aliasing. (a) The solid line is the tide height recorded at Victoria, British Columbia over a 60-day period from July 29 to September 27, 1975 (time in Julian days). The diamonds are the sea-level values one would obtain by only sampling once per day. (b) The power spectrum obtained from the two data series in (a). In this case, the high frequency energy (dashed curve) gets folded back into the spectrum at lower (aliased) frequencies (solid curve).

From Emery and Thomson (2014)

From Fourier analysis for specified frequencies to Harmonic Analyses...

We need to adjust the record length to match the desired Fourier components

Tidal frequencies → Integer multiples of the fundamental freq. (1/T) Use Fourier analysis to find constituent amplitudes and phases —

	0	0	-	21.89	0	21.89	0
/T)	1	0.042	24	-0.55	-0.90	1.05	-121.4
1)	2	0.083	12	-1.77	-1.99	2.67	-131.7
	3	0.125	8	0.22	-0.04	0.23	-10.3
<u> </u>	4	0.167	6	-0.44	-0.06	0.45	-172.2
	5	0.208	4.8	0.09	-0.07	0.11	-37.9
	6	0.250	4	0.08	-0.04	0.09	-26.6
	7	0.292	3.4	0.01	-0.16	0.16	-58.0
	8	0.333	3	-0.03	-0.16	0.16	-100.6
	9	0.375	2.7	-0.14	0.05	0.15	160.3
	10	0.417	2.4	-0.09	-0.07	0.11	-142.1
	11	0.458	2.2	-0.08	-0.12	0.14	-123.7
	12	0.500	2	-0.15	0	0.15	0

TABLE 5.12 Fourier Coefficients and Frequencies for the Amphitrite Point Month

Coefficient Coefficient

TIDAL CONSTITUENTS (M_2 , K_1 , S_2 ...) The letter indicates the different types of tides in each frequency band. The number, the cycles per lunar day

We need to adjust the record length to match the desired Fourier components

Tidal frequencies → Integer multiples of the fundamental freq. (1/T) Use Fourier analysis to find constituent amplitudes and phases

TIDAL CONSTITUENTS (M₂, K₁, S₂...)

The letter indicates the different types of tides in each frequency band. The number, the cycles per lunar day

HARMONIC ANALYSIS

(the user specifies the frequencies to be examined!)
Application of least-square techniques to obtain the constituents
Find constituent amplitudes and phases → Use them for tidal predictions

Length of the record – IMPORTANT!

Principal lunar - one cycle of $M_2 = 12.42 h$ (0.0805 cycles/hour = 1.93 cycles/day)

But we want to solve also the other constituents

Newton Equilibrium Theory Hypothesis

If the Earth is completely covered by water (no continents), and if the depth of the sea is enough to eliminate friction with the bottom surface, there should be an instantaneous response to the tidal forces.

TIDES Gravitational + centrifugal forces

Earth rotation (24 hours) Orbit of the Moon around Earth (27.32 days) Orbit of Earth around Sun (365.25 days)

Tides effects:

- Periodic sea level changes
- Tidal currents

Tides analysis

Earth rotation Semidiurnal tide (12.4 h) Moon-orbit inclination Mixed and diurnal tide (24 h)

Laplace (improvement of the Equilibrium Theory Hypothesis)

- **Finite depth**: obstacle for the immediate response
- **Coriolis effect**: wave rotated anticlockwise in the Northern Hemisphere.
- **Continents**: obstacle for wave propagation: reflection, diffraction, refraction.
- **Coast shallow waters**: waves amplification.
Tides analysis (spatial structure)

- Wavelength of thousands of kilometers: shallow water waves.
- Characteristics of progressive and stationary waves.
- Analysis through **harmonic decomposition** (simple waves of different periods).
- Each harmonic is characterized by its phase and amplitude.
- Represented in tidal maps.

The harmonic analysis from tides observational data allows for:

- Tidal prediction.
- Understand the tides at specific areas
- Interpretation of results in terms of hydrodynamics in the area

The tidal variations in a determined point can be represented as the sum of a finite number of harmonics since the angular frequency of these harmonics is known.

 $A_i \cos(\omega_i t - \varphi_i)$

 A_i = Amplitude ω_i = Angular velocity= $2\pi/T_i$ T_i = Constituent period φ_i = Constituent phase

	Argument					Period (hsm)	Relative amplitude	
	i _b	i _c	i _d	i _e	i _f			
Principal semi-diurnal								
M2	0	0	0	0	0	12,42	1,0000	
52	2	-2	2 0	0	0	12,00	0,4652	
N2	-1	0	1	0	0	12,66	0,1915	
Principal diurnal								
01	-1	0	0	0	0	25,82	0,4151	
K1	1	0	0	0	0	23,93	0,2921	
P1	1	-2	0	0	0	24,06	0,1932	
Long-period								
Mm	1	0	-1	0	0	27,55 dsm	0,0909	
Msf	2	0	0	0	0	14,76 dsm	0,1723	

Principal harmonic constituents of tides

Tidal Type	Form Number	Typical Form
Semidiurnal Tides	Less than 0.25	$\wedge \wedge \wedge$
Mixed, Semidiumal	0.25 - 1.5	$\wedge \wedge \uparrow$
Mixed, Diurnal	1.5 - 3.0	$\bigwedge \bigvee$
Diurnal Tides	More than 3.0	\bigwedge

The number of the astronomic constituents depends on the length of the timeseries.

The least-square adjustment is based on the minimization of the sum of the squared residual terms.

$$\implies R^2 = \left\{ \sum_{n=1}^N \eta_{obs}(t_n) - \left[C.\cos(\omega t_n) + S.\sin(\omega t_n) \right] \right\}^2$$

Further local complication... in shallow waters the tides are modified by the friction with the bottom surface, originating distortions in the tidal wave...

These effects can be also described through certain harmonic constituents through calculations with the main astronomical constituents.

We have sea level data of Ceuta

8760 data ... (8760/24 = 365) ... we have hourly data for a full year

8760 data ... (8760/24 = 365) ... we have hourly data for a full year

From a quick overview we see ~20 "large" cycles ... and other things (a lot of cycles)

1-month zoom We see almost 2 cycles And many others...

A practical case

Removal of trend

Removal of trend & Removal of mean

FT analysis \rightarrow FFT

WAVELETS \rightarrow When the timeseries are not stationary (event-like signal)

Always caution with the filters, use them for specific applications, but not for timeseries analysis type Fourier analysis

Always caution with the filters, use them for specific applications, but not for timeseries analysis type Fourier analysis

Always caution with the filters, use them for specific applications, but not for timeseries analysis type Fourier analysis

5.A practical example of data analysis

We are interested in the **coastal breezes** in the area

We have model simulations (not shown now) and we want to evaluate the model... How well is the model working?

https://www.ndbc.noaa.gov/station_page.php?station=62001

%% Load the data

%---

conf_data_buoy = 'data_buoy.dat'; conf_data_are = 'DATA_ARENOSILLO_20220719_20221031.mat';

% buoy (sea) data headers:
% Formato: 1aaaa, 2mm, 3dd, 4HH, 5mm, 6ss, 7modulo mínimo, 8módulo máximo,
% 9módulo medio, 10dirección mínima, 11dirección máxima, 12dirección media.

% Arenosillo (land) data headers: % Formato: 1. T2 (° C), 2. T3 (° C), 3. WS (m/s), 4. WD (° from North) y 5. RH (%). % Times: yyyy,mm,dd,HH,MM,SS

% ------- load the data data_sea = load(conf_data_buoy); data_land = load(conf_data_are); % -------

https://www.ndbc.noaa.gov/station_page.php?station=62001

Some calculations to see the data distribution... and compare

E (90°)

Wind Roses

Some calculations to see the data distribution... and compare

Some calculations to see the data distribution... and compare

And then... Comparison with model output...

VS

Analysis of case studies...

Relation with other variables... & processes (heat dumping, surface oceanic currents...) (what are the main factors affecting the coastal breezes?)

Bolado-Penagos et al., 2020 Progress in Oceanography 181, 102219. https://doi.org/https://doi.org/10.1016/j.pocean.2019.102219

0.75

0.25

speed [m s⁻¹]

4°W

2

3°W

Relation with other variables... & processes (heat dumping, surface oceanic currents...) (what are the main factors affecting the coastal breezes?)

https://doi.org/https://doi.org/10.1016/j.pocean.2019.102219

Relation with other variables... & processes (heat dumping, surface oceanic currents...) (what are the main factors affecting the coastal breezes?)

https://climexp.knmi.nl/start.cgi

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/history/method.shtml

https://ajdawson.github.io/eofs/latest/examples/elnino_standard.html

https://climatereanalyzer.org/

https://psl.noaa.gov/data/correlation/

Recommended Bibliography

Book: Data analysis methods in physical oceanography. *Thomson and Emery*

Book: Descriptive physical Oceanography: An Introduction. *Talley, Pickard, Emery & Swift*. (Chapter 6)

Book: An Introduction to Boundary Layer Meteorology. Stull

Book: Introduction to Micrometeorology. Arya

waves...

Thank you for your attention!

waves...

carlos.roman@uca.es

waves...

Caused by waves...

waves...

waves...