Introduction to Operational Modelling

Flávio Martins fmartins@ualg.pt

Summary

- What is a Model?
- Transport of a property; Eulerian vs Lagrangian
- Discretization in space and in time
- Model limitations
- Initial and boundary conditions
- Downscaling
- Types of models
- Operational modelling cycle
- Data assimilation, analysis and reanalysis
- Model Calibration and Validation

- Again: What is a model?
 - Abstracted representation of complex, 'real world' System (i.e. abstraction or simplification of reality)
- Why modelling? M(u) = y

u: Data inputs; M: model representation; y: resulted outputs

- Given *M* and *u* find y: Simulation, Prediction, Understanding;
- Given *u* and *y* find *M*: System Identification;
- \circ Given *M* and y find *u*: Inverse problem, Management, Decision Making

Again: What is a model?

$$\frac{\partial}{\partial t} \iiint_{CV} \beta dV = - \iint_{surface} (\beta \vec{v} \cdot \vec{n} - A(\vec{\nabla} \beta) \cdot \vec{n}) dA + (S_o - S_i)$$

Unlike other models.....

Mathematical models improve with age.....

Transport of a property

 $\frac{DT}{Dt} = \frac{\partial T}{\partial t}$

Transport of a property

 $\frac{DT}{Dt} =$ $U\frac{\partial I}{\partial x}$

Transport of a property

Newton's Law for a solid:

Which Equations?

 $\vec{F} = m\vec{a}$

Newton's Law for a fluid:

Which Equations?

$$\overrightarrow{F(x, y, z, t)} = m \ \overrightarrow{a(x, y, z, t)}$$

Field equations

Discretization in space (mesh type)

Geographic (Cartesian (ϕ , θ))

Cartesian (x, y)

Discretization in space (mesh type)

Curvilinear Orthogonal

Triangular (unstructured)

Discretization in space (vertical)

Cartesian

Sigma (Terrain Following)

Generic

Model limitations

Model limitations

Model Limitations

Model limitations

Model Limitations

$$Cr = \frac{v \,\Delta t}{\Delta x} = 1.0$$

V

T=0	1	2	3	4
1		0.25	0.125	0.0625
0	U.5	1	0 375	0.25
0	0	0.25	0.373	1
0	0	0	0.125	0.25
0	0	0	0	0.0625

Initial and boundary conditions

$\,\circ\,$ Initial conditions:

- Values in every cell
- Null (very dynamic Sys.)
- Interpolation
- Model "spinup"
- Data Assimilation

• Boundary conditions:

- Every time step
- Surface; Bottom; Lateral
- Spounge Layers
- Flux Relaxation
- Radiation Conditions

Downscalling

Downscalling

Downscalling

SOMA Model(OCASO project)

https://ocaso.puertos.es/#/

 Cartagena Bay (Colombia) (BASIC project)

http://bahiacartagena.omega.eafit.edu.co/

Finite differences

- Differential Eq. \rightarrow Algebraic differences equations
- Conservative Problems
- Curvilinear mesh trough coordinate transformations
- Easy for teaching

Finite Volumes

- CV equations. \rightarrow Algebraic equations
- Conservative by nature
- Curvilinear structured and unstructured mesh implemented in the "real" domain.

Finite Elements

- Differential Eq. \rightarrow Form functions adjusted trough the minimization of weights.
- Conservative Problems
- *Difficult to include convective terms*
- *Easy to implement unstructured meshes.*

$\,\circ\,$ Transport of any property

$$\frac{\partial \alpha}{\partial t} + u_j \frac{\partial \alpha}{\partial x_j} = \frac{\partial}{\partial x_j} \left(K \frac{\partial \alpha}{\partial x_j} \right) + Sources - Sinks$$

Water Quality (primary production) model

 α = Phyto, Zoo, Ammonia, Nitrate, Nitrite, Org. Nitr., etc.

Sources & Sinks:

Transformation Processes, e.g.: nitrification, grazing, mineralization, denitrification, etc..

• Water Quality (primary production) model

 $\,\circ\,$ Transport of any property

$$\frac{\partial \alpha}{\partial t} + u_j \frac{\partial \alpha}{\partial x_j} = \frac{\partial}{\partial x_j} \left(K \frac{\partial \alpha}{\partial x_j} \right) + Sources - Sinks$$

<u>Sediment Transport model</u>

 α = Sediment Concentration

Sources & Sinks:

Erosion, Resuspension, Sinking, Deposition, Flocculation, Compactation, etc..

 $\,\circ\,$ Transport of any property

$$\frac{\partial \alpha}{\partial t} + u_j \frac{\partial \alpha}{\partial x_j} = \frac{\partial}{\partial x_j} \left(K \frac{\partial \alpha}{\partial x_j} \right) + Sources - Sinks$$

<u>Water Temperature</u> (thermodynamics)

 α = Temperature

Sources & Sinks:

Solar radiation; Sensible Heat Loss; Latent Heat Loss; Light Attenuation; Stratification, etc..

Operational modelling cycle

Data assimilation, analysis and reanalysis

Data assimilation, analysis and reanalysis

Model Calibration & Validation

 $\,\circ\,$ Before we can use the model

Model Calibration & Validation

• How to compare?

Model Calibration & Validation

$\,\circ\,$ Tidal Decomposition

$$H(t) = \sum_{i=1}^{i=N} A_i \cos(\omega_i t - \phi_i)$$

Conclusions

- What is a Model?
- Transport of a property; Eulerian vs Lagrangian
- Discretization in space and in time
- Model limitations
- Initial and boundary conditions
- Downscaling
- Types of models
- Operational modelling cycle
- Data assimilation, analysis and reanalysis
- Model Calibration and Validation

An approximate representation of Reality Equivalent => Produce different model types Different mesh types / Explicit; Implicit; ADI Instability / Cr / Numerical diffusion **Necessary; Produce errors; Influence results Higher resolutions / Boundaries from GCM** Numerical method / Variables computed Model runs every day / restart from analysis **Combines model & Obs. producing analysis**

Necessary; many ways of comparing data

Flávio Martins fmartins@ualg.pt

