



## SHORT COURSE ON MARINE DATA LITERACY PROJECT MODE

# Analysis of spatial and temporal wave energy flux variability along the southern coast of Europe and northern Africa.

**Tomás Fernández Montblanc** Earth Science Department Alfredo Izquierdo González Applied Physics Department

Faculty of Marine Science. University of Cádiz





- 1.0verview
- 2. Project proposal
- 3. Target of the Project
- 4. Methods, data and software
- 5. Skills and compentences



Waves are one of the main mechanisms for transferring energy from the atmosphere to the ocean.

The energy accumulated from wind waves is released in a small portion of the ocean, the littoral area.





This area is densely populated and rich in diverse infrastructures



~205 million people (>40% population) lives in coastal regions (<50 km from the sea)</li>

■ In countries with a coastal border, 36% of the population lives within 5 km from the sea (Collet et al, 2013.)



# Waves can cause coastal erosion and contributing to the extreme water levels increasing coastal risk

#### **RECENT COASTAL EXTREME EVENTS**



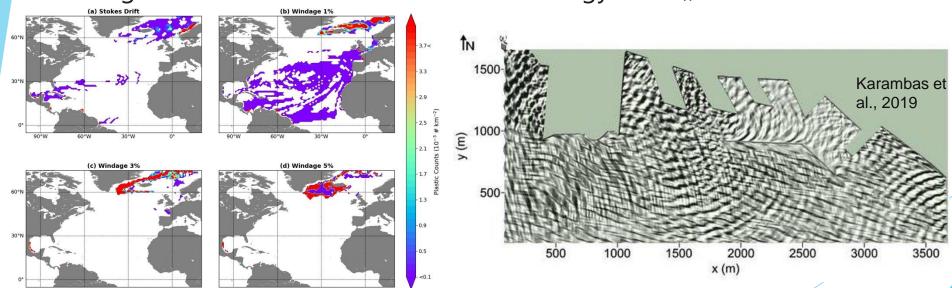
Xynthia, (February 27-28th, 2010).

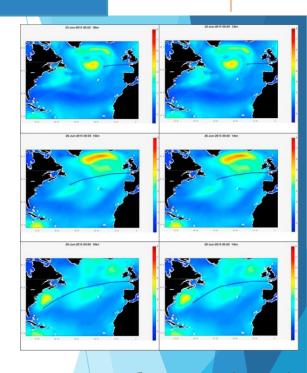


#### endeuillait la France

Dans la nuit du 27 au 28 février 2010, la tempête Xynthia semait mort et destruction. Et changeait les regards sur la défense contre la mer.




La commune de La Faute-sur-Mer allait paver le plus lourd tribut à la tempête (@archives Journal des Sabl




Onink et al (2019)

Wave climate determine many aspects relative to the conservation and exploitation of the marine and coastal areas.

i.e. the knowledge of pollutant transport in the ocean, to establish of optimum ship routing, to undertake coastal protection measures, and to design coastal infrastructures or wave energy farms,, ...





Vettor and Soares (2016)







#### ANALYSIS OF SPATIAL AND TEMPORAL WAVE ENERGY FLUX VARIABILITY

ALONG THE SOUTHERN COAST OF EUROPE AND N Table 1. Main characteristics of the ERA5 reanalysis (https://cds.climate.copernicus.eu/)

1. Description of the ERA5 reanalysis (https://cds.climate.copernicus.eu/) and Physics data in Emodnet

(https://emodnet.ec.europa.eu/en) for in situ measurement

2. Download wave data from the Copernicus climate portal corresponding to the ERA5

reanalysis

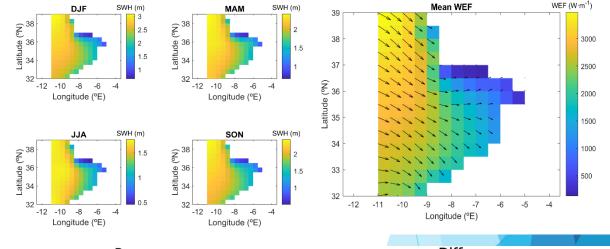
|          |    |     |    |      |       |    |   |   | - 2.2 |
|----------|----|-----|----|------|-------|----|---|---|-------|
| 39       |    |     |    |      |       |    |   |   | - 2   |
| 38       |    |     |    |      |       |    |   |   | - 1.8 |
| 37       |    |     |    |      |       |    |   |   | - 1.6 |
| e        |    |     |    |      |       |    |   |   | 1.4   |
| Latitude |    |     |    |      |       |    |   | 1 | 1.2   |
| ۳<br>35  |    |     |    |      |       |    |   | - | - 1   |
| 34       |    |     |    |      |       |    |   | - | - 0.8 |
| 33       |    |     |    |      |       |    |   | - | - 0.6 |
| 32       |    |     |    |      |       |    |   |   | 0.4   |
| 32       |    |     |    |      |       |    |   |   | 0.2   |
| -1       | 12 | -10 | -8 | -6   | -4    | -2 | 0 | 2 |       |
|          |    |     |    | Long | itude |    |   |   |       |

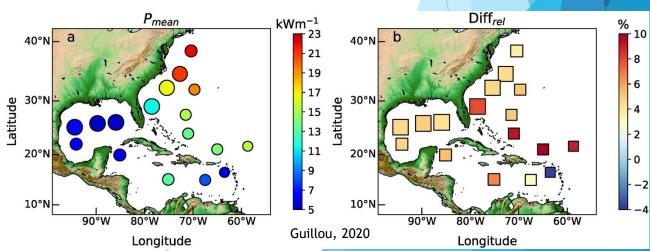
SWH 01-Jan-2019 03:00:00

| DATA DESCRIPTION      |                                                                                                                                              |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Data type             | Gridded                                                                                                                                      |
| Projection            | Regular latitude-longitude grid                                                                                                              |
| Horizontal coverage   | Global                                                                                                                                       |
| Horizontal resolution | Reanalysis: 0.25° x 0.25° (atmosphere), 0.5° x 0.5° (ocean waves)  Mean, spread and members: 0.5° x 0.5° (atmosphere), 1° x 1° (ocean waves) |
| Temporal coverage     | 1979 to present                                                                                                                              |
| Temporal resolution   | Hourly                                                                                                                                       |
| File format           | GRIB                                                                                                                                         |
| Update frequency      | Daily                                                                                                                                        |

| an waves                                               |                                                                   |
|--------------------------------------------------------|-------------------------------------------------------------------|
| Air-density over the oceans                            | Coefficient of drag with waves                                    |
| Free convective velocity over the oceans               | Maximum individual wave height                                    |
| Mean direction of total swell                          | Mean direction of wind waves                                      |
| Mean period of total swell                             | Mean period of wind waves                                         |
| Mean square slope of waves                             | Mean wave direction                                               |
| Mean wave direction of first swell partition           | <ul> <li>Mean wave direction of second swell partition</li> </ul> |
| Mean wave direction of third swell partition           | Mean wave period                                                  |
| Mean wave period based on first moment                 | Mean wave period based on first moment for swell                  |
| Mean wave period based on first moment for wind waves  | Mean wave period based on second moment for swell                 |
| Mean wave period based on second moment for wind waves | Mean wave period of first swell partition                         |
| Mean wave period of second swell partition             | Mean wave period of third swell partition                         |
| Mean zero-crossing wave period                         | Model bathymetry                                                  |
| Normalized energy flux into ocean                      | ☐ Normalized energy flux into waves                               |
| Normalized stress into ocean                           | Ocean surface stress equivalent 10m neutral wind direct           |
| Ocean surface stress equivalent 10m neutral wind speed | ✓ Peak wave period                                                |
| Period corresponding to maximum individual wave height | Significant height of combined wind waves and swell               |
| Significant height of total swell                      | Significant height of wind waves                                  |
| Significant wave height of first swell partition       | Significant wave height of second swell partition                 |
| Significant wave height of third swell partition       | ☐ Wave spectral directional width                                 |
| Wave spectral directional width for swell              | ☐ Wave spectral directional width for wind waves                  |
| Wave spectral kurtosis                                 | ☐ Wave spectral peakedness                                        |
| Wave spectral skewness                                 | These sheering heavenings                                         |







## ANALYSIS OF SPATIAL AND TEMPORAL WAVE ENERGY FLUX VARIABILITY ALONG THE SOUTHERN COAST OF EUROPE AND NORTHERN AFRICA.

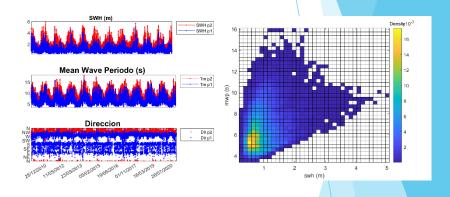
3. Basic processing of the netcdf files to prepare data to be used for wave cli-mate characterization.

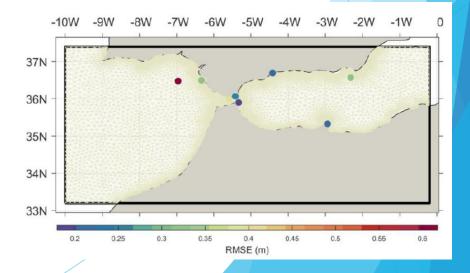
Visualization, extraction of subsets, concatenate files, etc.

4. Compute basic statistics for the mean wave characterization including wave energy flux for a given spatial domain.







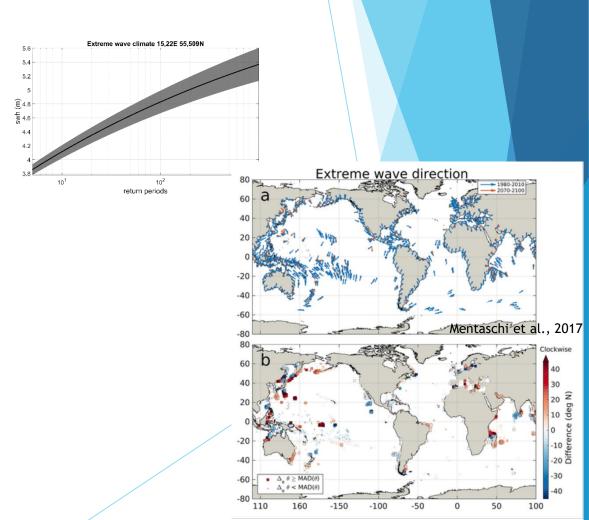

## ANALYSIS OF SPATIAL AND TEMPORAL WAVE ENERGY FLUX VARIABILITY ALONG THE SOUTHERN COAST OF EUROPE AND NORTHERN AFRICA.

5. Extraction of time series in some locations (wave buys location and coastal points) for the different wave parameters.

6. Assessment of ERA5 wave hindcast performance by comparison with in situ measurements using different skill scores










## ANALYSIS OF SPATIAL AND TEMPORAL WAVE ENERGY FLUX VARIABILITY ALONG THE SOUTHERN COAST OF EUROPE AND NORTHERN AFRICA.

7. Characterization and representation of the mean and extreme wave climate from the wave time series

8. Analysis of spatial pattern and long term variability of wave energy flux along the coastline of the study area





## ANALYSIS OF SPATIAL AND TEMPORAL WAVE ENERGY FLUX VARIABILITY ALONG THE SOUTHERN COAST OF EUROPE AND NORTHERN AFRICA.

- ✓ Find and download wave data from different sources and data providers
- ✓ Deal with netcdf files and data analysis of large oceanographic dataset
- ✓ Assessment of wave hindcast quality by comparison with in situ wave measurement to validate wave hindcast
- ✓ Statistical analysis for spatial/temporal characterization of waves



## METHODS, DATA AND SOFTWARE



ANALYSIS OF SPATIAL AND TEMPORAL WAVE ENERGY FLUX VARIABILITY ALONG THE SOUTHERN COAST OF EUROPE AND NORTHERN AFRICA.

#### **SOFTWARE**

MATLAB: The students would need access to a full version of Matlab. Including all the toolbox.

#### **METHODS**

The student will receive different matlab scripts to analyse the data. They will be requested to modify, complete and develop their own scripts with the guidance of the mentors.

#### **DATA**

Wave buoy observations (Emodnet)/ Hindcast model outputs (Copernicus CDS)



## SKILL/COMPETENCES



## ANALYSIS OF SPATIAL AND TEMPORAL WAVE ENERGY FLUX VARIABILITY ALONG THE SOUTHERN COAST OF EUROPE AND NORTHERN AFRICA.

Students will also increase their competences on:

Analytical thinking

Programming skills

Apply research steps and scientific methodology

Doing research both as individuals and as a team

Oral and written communication of research results



## SKILL/COMPETENCES WUCA



## THANKS!!!



Please, contact us if you have question!!!



Email: tomas.fernadez@uca.es