
02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 1/16

Marine Data Literacy Course - Practical 4

From data formats to practical use of water column
depth data
Aleksandra Cupiał, Wojciech Brodziński and Gabriela Gic-Grusza (University of Gdansk)

Friday 3rd December 2021, 4:00pm-7:00pm

Contents:

1 Introduction

1.1 Targets of the practical
1.2 Datasets used

2 Initial data manipulation

2.1 Initializing the Python Environment
2.2 Reading the model dat file
2.3 Basic dataset statictics
2.4 XYZ data visualization
2.5 Excercise 1

3 Bathymetric profiles

3.1 Simple array manipulation
3.2 Save data file
3.3 Excercise 2

4 Basic concepts of interpolation

4.1 1-D interpolation
4.2 Excercise 3
4.3 Excercise 4
4.4 2-D interpolation

1 Introduction

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 2/16

This instruction sheet is meant to describe and list the structured activities, instructions and expected outputs
for the practical exercise. It also serves to support the students to follow and execute the various steps of the
exercise.

It is suggested that these instructions are kept open and available during the practical session such that
instructions and pieces of code can be used directly without rewriting.

The students will be asked to answer four MC questions which are based on outputs from the practical session.
The tutors delivering the practical will guide you to prepare your answers at the appropriate stages of your
practical, so that you will be able to submit your answers at the end of the session.

1.1 Targets of the practical
Bathymetry is the study of the depth of oceans or lakes and is the underwater equivalent to hypsometry or
topography. Bathymetric (or hydrographic) charts are typically produced to support safety of surface or sub-
surface navigation. Usually these charts show seafloor relief or terrain as contour lines (called depth contours
or isobaths) as well as selected depths (soundings) and typically also provide surface navigational information.
Bathymetric information is also crucial for modelling (e.g. wave modelling), especially in the coastal zone and
construction of offshore infrastructure like wind farms.

The Leibniz Institute for Baltic Sea Research Warnemünde (IOW) is a non-university marine research institute
that provides bathymetry data for Baltic Sea area. For more information see https://www.io-
warnemuende.de/topography-of-the-baltic-sea.html (https://www.io-warnemuende.de/topography-of-the-baltic-
sea.html) The goal of this practical session is to:

learn how to manipulate different data formats, typical for bathymetric data (dat, txt, csv)
understand how the selection of subsets of data influences the final analysis
learn the basic aspects of spatial data interpolation and discover how different methods of interpolation
impact on data accuracy of the gridded output

In this practical the students will learn how to꞉

Download bathymetry data in different formats
Present bathymetric data as a map with and without land mask
Manipulate input array and present simple bathymetric profile
Open and save data text file
Use the most common interpolation methods (Nearest neighbor, Linear Interpolation etc.) on the
bathymetric profile data
Assess interpolation errors

Before the practical, the students are expected to꞉

1. Download and install Anaconda Individual Edition from https꞉//www.anaconda.com/products/individual; to
run Python code on your local machine using Jupyter Notebook OR use a Google Account to log into
Collaboratory by visiting https://colab.research.google.com (https://colab.research.google.com) to run the
code on as remote server.

2. Download a copy of the files that were specifically used for this presentation from the course website.

IMPORTANT: These installations need to be done ahead of the practical session so that their functionality can
be tested BEFORE the session.

https://www.io-warnemuende.de/topography-of-the-baltic-sea.html
https://colab.research.google.com/

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 3/16

1.2 Datasets used
Description provided by the IOW website.

The data is organized in two sets and includes a digitized topography of the Baltic Sea. Land heights and water
depths have been calculated for two regular spherical grids from available data.

Data set "iowtopo2" covers the whole Baltic Sea from 9 to 31 East and from 53 30’ to 66 North by (660 x
750) grid cells. The resolution is 2 minutes with respect to longitude, and 1 minute to latitude. This is
approximately 1 nautical mile, or 2 km, respectively. The region of the Belt Sea from 9 to 15 10’ East and from
53 30’ to 56 30’ North is comprised within data set "iowtopo1" with a twofold higher resolution (1 minute in
longitude and 0.5 minutes in latitude corresponding to approx. 1 km).

The data specify a representative average of the water depth or the land height of each grid cell, counted by
negative and positive values in meters. Some statistical parameters allow a rough estimate of the reliability of
the data. Since a common average of land heights and water depths lead to rather unsatisfying results with
respect to the gridded shoreline, a landmask is proposed in both data sets.

Data are provided in two formats. NetCDF files (.nc) are self-describing binaries which may be visualized and
processed by tools like Ferret, Grads or Matlab. Alternatively rather big ascii files (.dat) are given which start
with two header lines and contain the following data:

xlon: the geographic longitude of the grid cell centre
ylat: the corresponding geographical latitude
z_topo: land height/water depth, composite of z_water, z_land and the proposed landmask
z_water: average of all water depths allocated from original data to this grid cell
z_land: average of land heights allocated to this grid cell from edcdaac.usgs.gov/gtopo30/gtopo30.html
data
z_min: minimal value of the original data
z_max: maximal value of the original data
z_stdev: standard deviation of original data from averages z_water/z_land
z_near: datum lying nearest to the centre of this grid cell
d-near: distance of above mentioned data point from centre of grid cell
n_wet:

 0: number of original water depths allovated to this grid cell
 0: number of neighbors interpolated to fill this empty cell

n_dry:
 0: number of original land heights allocated to this cell
 0: number of iterations to find direct neighbours for interpolation

landmask: proposed "naturally loking" landmask (land=0, water=1)
flag: flag indicating a pure data average (0), or an interpolated/masked land height (+1) or water depth (-1)

∘ ∘ ∘ ∘

∘ ∘

∘ ∘

>
<

>
<

2 Initial data manipulation

2.1 Initializing the Python Environment

Importing the required libraries in Python.

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 4/16

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.mlab as ml
from scipy import interpolate
from scipy.interpolate import interp1d

2.2 Reading the model .dat file

In [2]: df = pd.read_table('iowtopo1_rev02.dat', sep="\s+") #'iowtopo2_rev03.dat'

In [3]: df.head()

2.3 Basic dataset statistics

Calculating basic statictics based on the given dataset

In [4]: df[["z_topo","z_water(m)","z_land(m)"]].describe()

2.4 Lat Long data visualization

Defining data bounding box

Out[3]:
x_lon y_lat z_topo z_water(m) z_land(m) z_min(m) z_max(m) z_stdev(m) z_near(m

0 9.00833 53.50417 20.5 0.0 20.5 20.0 21.0 0.7 21.

1 9.02500 53.50417 20.0 0.0 20.0 20.0 20.0 0.0 20.

2 9.04167 53.50417 22.0 0.0 22.0 21.0 23.0 1.4 21.

3 9.05833 53.50417 11.5 0.0 11.5 10.0 13.0 2.1 10.

4 9.07500 53.50417 6.0 0.0 6.0 6.0 6.0 0.0 6.

Out[4]:
z_topo z_water(m) z_land(m)

count 133200.000000 133200.000000 133200.000000

mean 12.667331 -9.296549 21.923123

std 40.911709 14.456380 32.521916

min -93.800000 -93.800000 0.000000

25% -15.900000 -15.800000 0.000000

50% 5.000000 0.000000 5.000000

75% 35.000000 0.000000 35.000000

max 220.500000 0.000000 220.500000

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 5/16

In [5]: BBox = (df.x_lon.min(), df.x_lon.max(), df.y_lat.min(), df.y_lat.max())
print(BBox)

Reading open street map within the bounding box

1. Go to https://www.openstreetmap.org/#map=5/51.500/-0.100
(https://www.openstreetmap.org/#map=5/51.500/-0.100)

2. Select "Export" button in the top left Menu
3. Isert BBox points
4. Select "Share" in the right menu
5. Save .png file in in the working folder

In [8]: map1 = plt.imread('map1.png')

Plotting data grid using openstreet map as a basemap (we are showing here only the location of grid points
without the depth value in these points)

In [16]: fig, ax = plt.subplots(figsize = (15,14.5))
ax.scatter(df.x_lon, df.y_lat, zorder=1, alpha= 0.2, c='k', s=0.1)
ax.set_title(' ')
ax.set_xlim(BBox[0],BBox[1])
ax.set_ylim(BBox[2],BBox[3])
ax.imshow(map1, zorder=0, extent = BBox)

Plotting actual latitude, longitude and depth data values.

(9.00833, 15.15833, 53.504169999999995, 56.495830000000005)

Out[16]: <matplotlib.image.AxesImage at 0xbb02308>

https://www.openstreetmap.org/#map=5/51.500/-0.100

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 6/16

In [17]: x1 = df.x_lon
y1 = df.y_lat
z1 = df.z_topo
print(z1)

In [18]: fig, ax = plt.subplots(figsize = (10,9))
ax.set_title(' ')
ax.set_xlim(BBox[0],BBox[1])
ax.set_ylim(BBox[2],BBox[3])
plt.scatter(x=x1,y=y1,c=z1)

Change all positive values (terrain, not wet) to one value, to create mask (land)

0 20.5
1 20.0
2 22.0
3 11.5
4 6.0
 ...

133195 142.0
133196 125.0
133197 124.0
133198 131.0
133199 138.5
Name: z_topo, Length: 133200, dtype: float64

Out[18]: <matplotlib.collections.PathCollection at 0xbfe7dc8>

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 7/16

In [19]: z2=z1
z2[z2 > 0] = 100
print(z2)

In [20]: fig, ax = plt.subplots(figsize = (10,9))
ax.set_title(' ')
ax.set_xlim(BBox[0],BBox[1])
ax.set_ylim(BBox[2],BBox[3])
plt.scatter(x=x1,y=y1,c=z2)

2.5 Excercise 1

0 100.0
1 100.0
2 100.0
3 100.0
4 100.0
 ...

133195 100.0
133196 100.0
133197 100.0
133198 100.0
133199 100.0
Name: z_topo, Length: 133200, dtype: float64

Out[20]: <matplotlib.collections.PathCollection at 0xc057048>

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 8/16

Perform the same calculations using iowtopo2_rev03.dat input file.

To see analyzed area on openstreet map go to https://www.openstreetmap.org/
(https://www.openstreetmap.org/) and enter BBox values.

Quiz Question 1:
What is the mean water depth in the area captured in iowtopo2_rev03.dat?

1. 48.880079
2. -17.450946
3. -219.316708
4. 145.776708

3 Preparing bathymetric profiles

3.1 Simple array manipulation
Let's select some data points from the source array. We will take wet point along y_lat equal to 55.29583 N and
x_lat in range from 12.67500 E to 14.49167 E, which includes only wet points (according to the map above).
To do that we need to select appropriate rows from the data array.

∘

∘ ∘

In [21]: df = pd.read_table('iowtopo1_rev02.dat', sep="\s+") #'iowtopo2_rev03.dat'
xx=(df.x_lon[79770:79880])
zz=(df.z_topo[79770:79880])
plt.plot(xx, zz, '--bo')

We can also select data along selected x_lat. Note that input grid y_lat value changes every 370 rows.

Out[21]: [<matplotlib.lines.Line2D at 0xc0b93c8>]

https://www.openstreetmap.org/

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 9/16

In [22]: yy=(df.y_lat[23990:45450:370])
zz=(df.z_topo[23990:45450:370])
plt.plot(yy, zz, '--ro')

3.2 Save data file
Save data stored as 1-D arrays in text file including 2 columns.

In [23]: np.savetxt('batyprof.csv', [p for p in zip(yy, zz)], delimiter=',', fmt='%s')

3.3 Excercise 2
Open txt file (example_profile.txt) with example depth profile data. Use similar function as we've used to open
.dat file:

df = pd.read_table('iowtopo1_rev02.dat', sep="\s+")

Then create new 1-D arrays containing x (distance along the profile) and d (depth) using similar function as we
had here:

x1 = df.x_lon
y1 = df.y_lat

Now plot the profile.

Quiz Question 2:
What kind of cross-shore depth profile is stored in example_profile.txt?

1. multi-bar
2. gentle slope
3. steep slope
4. one bar

Out[22]: [<matplotlib.lines.Line2D at 0xcaf6f08>]

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 10/16

4 Basic concepts of interpolation

Interpolation is the problem of approximating the value of a function for a non-given point in some space when
given the value of that function in points around (neighboring) that point. There are several interpolation
techniques, some of them very sophisticated and each has its advantages and disadvantages. Here, we will
learn about 3 most used techniques in bathymetric data: the nearest neighbor, linear interpolation, cubic spline
interpolation and see an example of spatial interpolation that uses Delaunay triangulation.

4.1 1-D interpolation
The following examples will be presented for the one-dimesional data.

The nearest neighbor algorithm selects the value of the nearest point and does not consider the values of
neighboring points at all, yielding a piecewise-constant interpolant. The algorithm is very simple to implement
and is commonly used (usually along with mipmapping) in real-time 3D rendering to select color values for a
textured surface.

In [24]: x = np.linspace(0, 20)
y = np.cos(-x**2/27.0)
f1 = interp1d(x, y, kind='nearest')
f2 = interp1d(x, y, kind='previous')
f3 = interp1d(x, y, kind='next')
xnew = np.linspace(0, 20, num=101)
import matplotlib.pyplot as plt
plt.plot(x, y, 'o')
plt.plot(xnew, f1(xnew), '-', xnew, f2(xnew), '--', xnew, f3(xnew), ':')
plt.legend(['measured value', 'nearest neighbour', 'previous neighbour', 'nex
t neighbour'], loc='best')
plt.show()

Linear interpolation is a method of curve fitting using linear polynomials to construct new data points within
the range of a discrete set of known data points.

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 11/16

In [25]: X = np.arange(0,10) #X, Y - Example measured data
Y = X^2
#f = interpolate.interp1d(X, Y)
f = interp1d(X, Y,kind='linear')
Xnew = np.arange(0, 9, 0.1)
Ynew = f(Xnew) # use interpolation function returned by `interp1d`
plt.plot(X, Y, 'o', Xnew, Ynew, '-')
plt.show()

In cubic spline interpolation method the interpolating function takes the form of a piecewise polynomial of 3rd
order. Specifically, we assume that each pair of neighbouring data points and is joined by
a cubic polynomial, which means that for points the interpolant is built from cubic functions.
Additionally, we want each polynomial to join with its neighbours as smoothly as possible, therefore we
constrain the interpolating function to have continuous first and second derivatives at the data points.
In an example below we will compare the results of linear and cubic spline interpolation for a given data set.

(,)xi yi (,)xi+1 yi+1

n n − 1

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 12/16

In [26]: x = np.linspace(0, 20, num=10)
y = np.cos(-x**2/27.0)
f1 = interp1d(x, y, kind='linear')
f2 = interp1d(x, y, kind='cubic')
xnew = np.linspace(0, 20, num=201)
plt.figure(figsize = (11,7))
plt.plot(x, y, 'o')
plt.plot(xnew, f1(xnew), '--', xnew, f2(xnew), '-')
plt.legend(['measured value', 'linear', 'cubic'])
plt.show()

4.2 Excercise 3

Quiz question 3:
Assume you have obtained measurements data set (x,y) described by the following expressions in Python: x =
np.linspace(0, 6, num=7), y = np.exp(x/2)np.cos(2x). Calculate the interpolated value for =5.30 using
the nearest neighbour (NN), linear and cubic spline methods.
(Hint: you can print the output with print() function, e.g. print(f(x)) will print the value of function f for a given x
value).

1. NN -10.22; Linear -8.00; Cubic -2.07
2. NN -10.22; Linear -2.07; Cubic -8.00
3. NN -8.00; Linear -2.07; Cubic -10.22
4. NN -2.07; Linear -10.22; Cubic -8.00

yint xint

4.3 Excercise 4
Let us take a look at depth point measurements. Open txt file (sample_data.txt) with example depth profile data.
Use similar function as in the exercise 2. Plot the data points:

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 13/16

In [27]: sd = pd.read_table('sample_data.txt', sep="\s+")
X = sd.x
D = sd.d
plt.plot(X, D, 'o')

Now interpolate the data using interp1d function, as in the example above. Plot the results.
Remember that the default interpolation method is linear.

In [28]: X_new = np.linspace(0,100,num=20)
intfunc = interpolate.interp1d(X,D,fill_value="extrapolate")
f = intfunc(X_new)
plt.plot(X_new,f,'r', label='interp/extrap')
plt.plot(X,D, 'o', label='data')
plt.legend()
plt.show()

Prepare appropriate lines using nearest and next neighbour alghoritm. Plot the results.
Hint: look at the cell below. What can you write instead of ?? marks?

In []: f1 = interp1d(X, D, ??,fill_value="extrapolate")
f2 = interp1d(X, D, ??,fill_value="extrapolate")
plt.plot(X, D, 'o')
??

Out[27]: [<matplotlib.lines.Line2D at 0x11078d88>]

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 14/16

In [29]: f1 = interp1d(X, D, kind='nearest',fill_value="extrapolate")
f2 = interp1d(X, D, kind='next',fill_value="extrapolate")
plt.plot(X, D, 'o')
X_new = np.linspace(0,100,num=20)
plt.plot(X_new,f1(X_new),'-',X_new,f2(X_new),'--')
plt.legend(['measured value','nearest neighbor','next'],loc='best')
plt.show()

Quiz Question 4:
Based on the results from Exercise 4, select the true statement.

1. Significant difference between neighbor values does not influence results of interpolation, when different
interpolation methods are used;

2. There is no difference between the three algorithms (nearest neighbor, next neighbor, linear) results;
3. Linear interpolation algorithm is the best one to interpolate depth profile data;
4. There are differences between the results of linear and next neighbor interpolation algorithms.

4.4 2-D interpolation
Examples refer to one dimensional data. As one can see, interpolation is a commonly used technique to create
continuous surface from discrete points. However, a lot of real-world phenomena are continuous - elevations,
density, temperatures etc. If we wanted to model these surfaces for analysis, it is impossible to take
measurements throughout the surface. Hence, the field measurements are taken at various points along the
surface and the intermediate values are inferred by interpolation.

Let us take a look at depth point measurements:

In [30]: ed = pd.read_table('example_2d.txt', sep="\s+")
ed.head()

Out[30]:
x_lon y_lat d

0 17.96495 54.87318 -21.26429

1 18.10300 54.91549 -24.99855

2 17.97012 54.95810 -23.30563

3 18.01966 54.88771 -22.44334

4 18.16236 54.92071 -24.22124

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 15/16

In [31]: BBox = (ed.x_lon.min(), ed.x_lon.max(), ed.y_lat.min(), ed.y_lat.max())
print(BBox)

We use the same functions as previously to visualize the data.

In [32]: map2 = plt.imread('map2.png')
fig, ax = plt.subplots(figsize = (18,17))
ax.scatter(ed.x_lon, ed.y_lat, zorder=1, alpha= 0.9, c='r', s=20)
ax.set_title(' ')
ax.set_xlim(BBox[0],BBox[1])
ax.set_ylim(BBox[2],BBox[3])
ax.imshow(map2, zorder=0, extent = BBox)

We will use matlib functions tripcolor and tricontourf to show simple method to create surface from
irregular points based on unstructured triangular grid. It is important to note, that the triangulation itself is not an
interpolation method.

In the default setting, both these functions use Delaunay triangulation method. For given set of points, a set of
triangles is generated. Each triangle is given by the indices of the three points that make up the triangle,
ordered in either a clockwise or anticlockwise manner. Function tripcolor conducts triangulation and fills
these triangles with an average of z value from the original set of points. Function tricontourf conducts
triangulation as well and generates set of contour lines which are the filled. Function tricontour leaves
contours unfilled.

Data preparation.

In [33]: x = ed.x_lon
y = ed.y_lat
d = ed.d

(17.85582, 18.35652, 54.8492, 55.022119999999994)

Out[32]: <matplotlib.image.AxesImage at 0xc04ed08>

02.12.2021, 11:44 SEA-EU Practical 4

localhost:8890/nbconvert/html/zajecia_prowadzone/SeaEu_uczelnia/SEA-EU nowe/SEA-EU Practical 4.ipynb?download=false 16/16

In [34]: f, ax = plt.subplots(1,2, sharex=True, sharey=True, figsize = (16,6))
ax[0].tripcolor(x,y,d)
ax[1].tricontourf(x,y,d, 20) # choose 20 contour levels, just to show how goo
d its interpolation is
ax[0].plot(x,y, 'ko ')
ax[1].plot(x,y, 'ko ')

Out[34]: [<matplotlib.lines.Line2D at 0x185e4e88>]

