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Welcome

I This lecture aims at giving you a sort of big picture rather than details:
What is generally out there to manage scientific data and what are potential pitfalls?

I If you have questions during the presentation, please feel free to interrupt at any time

I If you are interested in more details, please feel free to contact me bilateral:
pkr@informatik.uni-kiel.de

pkr@informatik.uni-kiel.de


BTW: Why care?

As simple as that: before you can the magic stuff, you need to manage the data

The Knowledge Discovery in Databases Process following Fayyad, Piatetsky-Shapiro, Smyth (1996)
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Big Data is a Buzzword

I Term first triggered by McKinsey in 2011
I business perspective (main focus)
I technical perspective

I Indeed, today, people pay with data
I e.g., Facebook, Google, Twitter, Amazon

I “use service” means “provide data”
I data is used to “improve” service target

advertisement (user pays indirectly)
I data is sold

I Over the years, other terms have emerged or have
been re-discovered and are used sometimes as
synonyms:
I Data Science, Artificial Intelligence
I Business Intelligence, Data Mining, Machine

Learning, ...
I Industry 4.0, IoT, ...

McKinsey Global Institute, Big data: The next

frontier for innovation, competition, and productivity,

June 2011

Image source: The New York Times:

https://www.nytimes.com/2018/03/06/business/

economy/user-data-pay.html
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What Big Data is — is Up to You!

Big Data is characterized by some “V’s”1, e.g. four:

I Volume: data from many sources
I volume on disk
I number of instances (in tables: rows) or features (in tables: columns)

I Velocity: data is changing/new data is arriving (potentially at a high pace)
I sensors constantly produce data
I communication is constantly going on

I Variety: not all data is the same
I data can have different structures beyond tables: vectors, sequences, graphs, tensors
I different sources rely on different formats

I Veracity: the meaning of the data is unsecure
I inputs may be noisy, manipulated or misinterpreted
I consider data objects as samples not facts (cf. “learning” above)

1The original definition by McKinsey lists three V’s: volume, velocity, variety
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My Favorite Big Data Meme (Four V’s)

Picture from: IBM (no, I do not get any money from them, I just like the pic)
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From Data to Knowledge

The Data Pyramid:

I Raw data is often big (somehow), OK

I BUT during the Data Science Process (see above) data shrinks

I AND FINALLY, for complex tasks, high-quality data is often still small (e.g. not enough
labels, noise, irrelevant, too high resolution)

raw

preprocessed 

usable

labeled

The Data Pyramid

Consequences:

I Analyses still run in RAM (Python/R scripts, Viz tools, ...

I Big Data systems often support the first step in the process
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Data Management in the Pre-Big Data Era

Some history:

I 60s: IBM developed the Hierarchical Database
Model
I Tree-like structure
I Data stored as records connected by links

(Forget about it; just in case, if your grumpy grandpa is telling stories!)

I Mid 80‘s: Rise of Relational Database Model
I Data stored in a collection of tables (rows and columns)
I Strict relational schemas (first Normal Form!)
I SQL became standard language (based on relational algebra)

I Relational Database Management Systems (RelDBMS) became (and still are) the de facto
standard for managing cooperate data
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Properties of RelDBMS

I RelDBMS have been designed for transaction data (daily business of companies), e.g.
financial transactions, flight booking, order transaction, etc.
I data consistency, availability, and fault-tolerance are most important
I short read/write operations on the data
I scale: usually in the range of MBytes-GBytes

I Advantages:
I “Data independence” improves flexibility over file systems
I Advanced transaction concept (“ACID” properties) implement e.g.

I synchronization of multiple users
I back-up/ and recovery strategies

I Automatic/transparent query optimization
I ...
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Relational Data Model: Basics

I The relational model uses tables as the one and only way to structure data

I A table represents objects with a given set of features

I Rows = objects / entries / tuples / instances

I Columns = attributes / features / variables (Statistics)

I Columns have atomic data types (fixed
length in terms of bits)

I Keys are identifiers for rows (see next)

I Complex relationships between objects are
modeled through references between the
corresponding tables (foreign keys)
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Relational Data Model: Keys

I Each row must be uniquely identifiable

I Different to programming languages (objects are identified by identifiers/references), in
the relational model, rows are identified by attribute values

I One or more attributes must be flagged as key

I Values of these attributes must be unique

I Keys identify rows uniquely

I Keys can be used to refer to (unique) rows from other tables:

PNr Name Vorname Abteilung
001 Huber Erwin 01
002 Mayer Hugo 01
003 Müller Anton 02 

ANr Abteilungsname
01 Buchhaltung
02 Produktion
03 Marketing

Mitarbeiter Abteilungen
Here, we use the key of the table
Abteilungen (= division), “ANr”, to link
each entry in the table Mitarbeiter (=
employee) to its corresponding division
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Relational Data Model: Normalization

I Let’s consider this table:
Lectures

LectureNr Title Term
012 Java 1-0-1 Summer 2018
013 Machine Learning Winter 2017
013 Machine Learning Winter 2018

I LectureNr and Term are the key attributes (we need both to be unique)

I What is the problem?

I We need to store the title of a lecture several times (here “Machine Learning”):
For any two rows r1 and r2 it holds: if the values of r1 and r2 in LectureNr are the same,
the values in Title of r1 and r2 must be identical, too

I We call this a functional dependency (“FD”), here Title depends on LectureNr)
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Relational Data Model: Normalization

I Now consider, we want to change the name to e.g. ”Introduction to ML”

I Obviously, we need to do that multiple times in order to be consistent

I If we do not know, that the title is redundant, we might miss some tuples, i.e., we get
inconsistent data

Lectures
LectureNr Title Term
012 Java 1-0-1 Summer 2018
013 Machine Learning Winter 2017
...

...
...

013 Machine Learning Winter 2018
...

...
...

013 Machine Learning Winter 2019

I So, redundancies waste storage (Huhh, now really???)

I But the real problem is, they cause anomalies, like the “insert”-anomaly mentioned above
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Relational Data Model: Normalization

I By the definition of keys, any entire row of a relation is always functionally dependent on
the key

I These FDs are welcome and do not cause redundancy (keys are used to uniquely identify
tuples!)

I However, there may be more FDs:
I an attribute may be functional dependent on only a part of a key (if the key consists of more

than one attribute), e.g. Title depends on LectureNr
this is called a partial FD

I an attribute may be functional dependent on an attribute that is not part of the key
this is called transitive FD

I Normalization gets rid of these FDs that are not related to the properties of keys because
they can cause anomalies (due to redundancies)

I In theory, there may be more FDs to take care of, but in practice, only the
(aforementioned) FDs are erased
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Relational Data Model: Normalization

I We can fix the problem from above by splitting the table (which suffers from a partial FD)
into two ones:

Lectures
LectureNr Title
012 Java 1-0-1
013 Machine Learning
...

...

Lectures
LectureNr Term
012 Summer 2018
013 Winter 2017
...

...
013 Winter 2018
...

...
013 Winter 2019

I Schemas do not have
I any FDs of attributes on a part of any key candidate
I any FDs of attributes on non-key candidate attributes

are called “3NF” schemas (because they meet a formally defined set of “normal forms” —
three in that case)
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Just a short word on SQL

I The Structured Query Language (SQL) is the programming language of relational DBMS

I Super mature API to
I Define data structures (schema)
I Store/manage data (insert/delete)
I Manipulate and query data

I To be good in using SQL, you need approx. 2 weeks and then continuous practice
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Transaction Concept

I The key to synchronizing multiple users and availability in case of errors/crashes is the
transaction concept

I Typically, a user interaction (program, session, ...) is a transaction

I Thus, a transaction is a sequence of read/write operations that preserves a consistent
database state

I The transaction management of a DBMS has two main tasks to do:
I Synchronization: coordination of several users
I Recovery: solution of crashes and other errors
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Transaction Concept

I Example: Crash (at the bank)
I Transfer 200.- EUR from the account of Huber to the account of Muller
I Possible schedule:

1. Decrease the balance of Huber by 200.- EUR
2. Increase the balance of Muller by 200.- EUR

I Possible scenario with this schedule:
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Transaction Concept

I Example: Uncoordinated Users (at the airport)
I Flight operations (FO) prints out the names of passengers and the number of passengers on

flight LH001
I Check-in (CI) checks-in another passenger (one of these late arriving HONs — I am really

jealous because of her status)
I Possible schedule:

1. FO: prints out list of names
2. CI: checks passenger “Phantomime” in
3. FO: prints out number of passengers

I What went wrong?
I FO gets inconsistent information because “Phantomime” is not on the list but is counted
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ACID

The ACID principle defines a set of properties for transactions taht should be guaranteed by a
DBMS:

I Atomicity: a transaction either runs to completion or (if it does not complete) has no
effect at all

I Consistency: a transaction preserves any integrity constraints

I Isolation: even though transactions are executed concurrently (for performance reasons),
the effect of each transaction must be the same as if they have been operated serially
(without concurrency)

I Durability: the effect of a transaction that successfully completes (gets a “commit” from
the system) must remain in the database even in case of a later crash, error, etc.
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The Big Picture

I Relational DBMS are the de facto standard in data management

I RelDBMS offer a mature and powerful technology for managing cooperate data (superior
to simple file system-based solutions)

I Data is modeled in tables (just like Excel tables)

I Consider normalization for non-redundant, anomaly-free storage

I ACID is the “holy grail” of RelDBMS, it ensures a secure, consistent and available data
source under multiple users with parallel access

I SQL is a powerful standard API for data management (modeling, storing, retrieving)
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Spatial/Geo Data

I Geo objects ...
I have spatial coordinates — usually 2D, sometimes 3D

(e.g. a.o.s.l)
I may have a temporal dimension
I usually have additional (non-spatial) attributes

I Types of attributes
I Spatial (coordinates of a point, area of a polygon, ...)
I Topological (polygon 1 and polygon 2 are “neighbors”,

have a common face, ...)
I Thematic (polygon 1 is a cornfield, point 2 is the city

hall, ...)
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Spatial Coordinates and Realms

Challenge of the Euclidean space (here 2D):

I Point coordinates: (x , y) where x , y ∈ R
I Computers store real numbers as a so called “floating point number” (float) with a

specific precision

I Not all real numbers can be represented as float ...

I Problem: the intersection (PS) of two lines (L1 and L2) may not be representable by floats

I Work-around: interpolation to the next float produces inconsistencies (PS is not part of L1
nor L2)
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Spatial Coordinates and Realms

Solution: Realms (Schneider, Güting 1994)

I Given a set of points PR ⊆ N×N over a grid

I A realm is a set of points P ⊆ PR and non-intersecting line segments S over PR

I Intersections of line segments must be on a
grid point in PR

I A realm can be interpreted as a (planar)
graph:
I Nodes: points P
I Edges: line segments S

Managing and Processing (Big) Scientific Data (Nov 10, 2021) | (MPBSD) | 3. Managing Spatial (/Geo) Data Folie 21



Modeling Spatial Data

I In GIS, spatial data is usually mapped on a relational model, i.e. we store all information
in tables

I There are many different ways to do that, e.g.
I Spaghetti Model

I Each object is a sequence of distinct point coordinates ((x , y), e.g. border points)
I Each object is represented independently (strong redundancy!!!)
I Simple model with no explicit topological properties (e.g. no holes in polygons)

I TIGER Model: Topologically Integrated Geographic Encoding and Referencing Model (Marx,
1986)

I Complex non-redundant/normalized model (point coordinates are referenced)
I Different data types for points, lines between points, surface (closed set of lines), and cover

(union of surfaces)
I Problem (of normalization): high costs to get all information of more complex structures;

result of a query does not return an “object” (e.g. line) but a set of entries (e.g. points)
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Modeling Spatial Data
Example TIGER model:

Legend:
Parzelle = table of the covers
Polygone = table of the surfaces
Kanten = table of the lines
Punkte = table of the points
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Some History (again)

I Rise of the Web 2.0 in the mid 2000’s required DBMS to scale up

I Approaches

I Vertical scaling: enlarge a single
machine
Limited in space, expansive

I Horizontal scaling: use many
machines to form clusters/grids
Limited by cluster maintenance

I Horizontal scale won

I That was the birth of the NoSQL movement in the mid 2000’s
I Problem: RelDBMS do not scale well horizontally
I Thus, big players like Google or Amazon developed their own storage systems
I NoSQL (“Not-Only” SQL) databases were born
I Today: Age of NoSQL: several different NoSQL systems available (> 250)
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Characterstics of NoSQL Databases

I There is no unique definition but rather some characteristics for NoSQL Databases:

I Horizontal scalability (cluster-friendliness)
I Non-relational
I Distributed
I Schema-less
I Open-source (at least most of the systems)

I Most importantly: ACID (the holy grail of RelDBS) is no more!!!

I Rather: there is BASE — an artificial concept for NoSQL databases:

I Basically Available: The system is generally available, but some data might not at any time
(e.g. due to node failures)

I Soft State: The system‘s state changes over time. Stale data may expire if not refreshed.
I Eventual consistency: The system is consistent from time to time, but not always. Updates

are propagated through the system if there is enough time.

I BASE is placed on the opposite site to ACID when considering a consistency-availability spectrum
(see later)!
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Consistency

Two types of consistency corresponding to distribution type:

I Logical consistency (corresponds to
sharing): data is consistent within
itself (Data Integrity)

I Replication consistency: data is
consistent across multiple replicas
(on multiple machines)

I Consequence: CAP-theorem

Document Document

Data sharding Data replication
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The Big Picture

Thus, any partitioned system (horizontally scaled) needs to give up either perfect availability or perfect
consistency:
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NoSQL Data Models

The four main NoSQL data models out there:

I Key/Value Stores

I Document Stores

I Wide Column Stores

I Graph Databases
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Key Value Stores

I Most simple form of database systems

I Store key/value pairs and retrieve values by keys

I Values can be of arbitrary format

I There are very heterogeneous systems

I Some systems support ordering of keys, which enables efficient querying, like range queries
I Some systems support in-memory data maintenance, some use disks

I Examples: redis, Dynamo
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Document Stores

I Store documents in form of XML or JSON

I Semi-structured data records that do not have a homogeneous structure

I Columns can have more than one value (arrays)

I Documents include internal structure, or metadata

I Data structure enables efficient use of indexes

I Examples: mongoDB, CouchDB
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Wide Column Stores

Wide Column Stores

I Rows are identified by keys

I Rows can have different numbers of columns (up to millions)

I Order of rows depend on key values (locality is important!)

I Multiple rows can be summarized to families (or tablets)

I Multiple families can be summarized to a key space

I main focus usually: availability

I Examples: Cassandra, Hbase
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Graph Databases

Graph Databases

I Use graphs to store and represent relationships between entities

I Composed of nodes and edges

I Each node and each edge can contain properties (Property-Graphs)

I Example: Neo4J
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NoSQL DB — Big Picture, Finally

CAP Theorem:

C

A P
A

C
ACID

BASE

All clients always
have the same view

of the data

The system works well
despite physical
network partitions

Each client can al-
ways read and write

AP-Systems

AC-Systems CP-Systems

- RDBMSs (MySQL, 
Postgres, …)

- Redis

- Dynamo

Key/Value Stores
Document Stores
Wide Column Stores
Graph Databases

- MongoDB

- CouchDB

- Cassandra

- HBase

- Neo4J
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Motivation

I Drawbacks of RDBMS (in the context of Big Data)
I Database system are difficult to scale
I Database systems are difficult to configure and maintain
I Diversification in available systems complicates its selection
I Peak provisioning leads to unnecessary costs

I Advantages of NoSQL systems
I Elastic scaling
I Less administration
I Better economics
I Flexible data models

But ...
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Motivation

I NoSQL drops a lot of functionality of RDBMS
I No real data dictionaries, but semi-structured models for providing meta-data (usually still

hard to access without explicit knowledge of the data model)
I Transaction processing constrained to CAP-theorem
I Often limited access control (no user groups, roles)
I Limited indexing / efficiency is most replaced with scalability

I So what is left???
I Storing massive amount of data in cluster environments (sharding and replication)
I Eventual consistency (at some point after the change, every instance of the data is

replication consistent)
I Some database like APIs (e.g., CQL)

OK, and what exactly are NoSQL DBs so much different from a classical File-System?
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Distributed File Systems

Well ... — not too much?

I Remember: there was something about a Data Science “Process” involving
“preprocessing”, and there was something about a “data pyramid” ...
I Majority of analysis is still run on files
I Machine learning, statistics and data mining methods usually access all available data
I Most data mining and statistics methods require a well-defined input and not

semi-structured objects (aha, this is one of the tasks to be done in preprocessing ...)

I Scalable Data Analytics often suffices with a distributed file system

I Analytics methods may be parallelized on top of the distributed file systems
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Distributed File Systems

I Parallel computing (“cluster computing”) architecture
I computing nodes are stored on racks (8-64)
I nodes on a single rack connected by a network (usually GB Ethernet)

Racks of servers (and switches at the top),
at Google’s Mayes County, Oklahoma data
center
Picture from: extremetech.com
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Large-Scale File-Systems

I Characteristics
I Files are several TBs in size (Facebook’s daily logs: 60TB; 1000 genomes project: 200TB;

Google Web Index; 10+ PB)
I Files are rarely updated
I Reads and appends are common

I Examples
I Google File System (GFS)
I Hadoop Distributed File System (HDFS, by Apache)
I CloudStore
I HDF5
I S3 (Amazon EC2)
I ...
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Large-Scale File-Systems

I Organization
I Files are divided into chunks (typically 16-64MB in size)
I Chunks are replicated n times (e.g. default in HDFS: n = 3) at n different nodes (best case

scenario: replicas are located on different racks optimizing fault tolerance)

I How to find files?
I There is a master node which holds a meta-file (directory) about location of all copies of a

file
I Thus, all participants using the DFS know where copies are located (through the master

node)
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Architecture

I HDFS: A distributed file system that provides high-throughput access to application data

I HDFS has a master/slave architecture, it looks like this (puhh ...):

Picture from http://hortonworks.com/hadoop/hdfs/#section_2
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Map-Reduce: Differentiation to Other Systems

I Map-Reduce vs. RelDBMS:

Map-Reduce RelDBMS

Data size Petabytes Gigabytes
Access Batch Interactive and Batch
Updates Write once, read many times Read & Write many times
Structure Dynamic schema Static schema
Integrity Low High (normalized data)
Scaling Linear Non-linear
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Map-Reduce: Differentiation to Other Systems

I Map-Reduce vs. High performance computing (HPC)
I Accessing large data volumes becomes a problem in HPC, as the network bandwidth is the

bottleneck
Solved through Data Locality by Map-Reduce

I Data flow must be handled explicitly (by programmers) in HPC
Solved through higher level programming (data flow is implicit) by Map-Reduce

I The handling of partial failures depends on the HPC architecture
Map-Reduce is a shared-nothing-architecture (no dependence of tasks), so detection of
failures and rescheduling of missing operations is “easy”
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Map-Reduce: Differentiation to Other Systems

I In general, Map-Reduce can be used to manage large-scale computations in a way that is
tolerant of hardware faults

I System itself manages automatic parallelization and distribution, I/O scheduling as well as
coordination of tasks that are implemented and encapsulated in functions called map()
and reduce()

I System is able to cope with unexpected system failures or stragglers automatically

I Several implementations of the basic model available: Google’s internal implementation,
open-source implementation Hadoop (using HDFS), . . .
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Apropos Apache Hadoop

I Tools within Apache Hadoop Package (list is not exhaustive):

HBase Distributed, column-oriented database

Hive Distributed data warehouse

Pig Higher-level data flow language and parallel execution framework

ZooKeeper Distributed coordination service

Sqoop Tool for bulk data transfer between structured data stores and HDFS

Oozie Complex job workflow service

Chukwa System for collecting management data

Mahout Machine learning and data mining library

BigTop Packaging and testing

Avro serialization system for cross-language RPC and persistent data storage
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Apache Hadoop: Limitations of Map-Reduce

I Map-Reduce is a successful batch-oriented programming model

I However, there is an increasing demand for additional processing modes:
I Graph Analysis
I Stream data processing
I Text Analysis
I ...

I Demand is growing for real-time and ad-hoc analysis

I Analyses with specific queries including only subsets of data (with additional time
constraints)

I Solution in the Hadoop / Map-Reduce-World: YARN

I And finally: not everything is parallelizable ...
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